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The problem of determining the shape of the transverse section of a prismatic 
bar with a prismatic longitudinal cavity (hole) of given shape, subjected to tor- 

sion, from the condition that the torsional stiffness would be maximal for a gi- 
ven cross-sectional area, is considered. The apparatus of complex variable func- 

tion theory is used to determine the outline required. Examples of computing 

the outlines of the sections for elliptical, square, and rectangular hole shapes 
are presented. 

The problem of determining the shape of the section of a bar of greatest torsional stiff- 
ness for the given cross-sectional area was considered as an isoperimetric variational 
problem about the stationary value of some functional in a domain with a moving boun- 

dary [l]. Besides the usual equations for the torsion function, a side condition is obtained 
as natural conditions for the stationary of the functional: the derivative of the torsion 
function with respect to the normal to the outline should be constant along the outline 
which is to be determined. The same side condition for the torsion function on the boun- 

dary of a domain with extremal torsional stiffness has been obtained in [2]. The problem 

of determining the boundary of the domain occupied by the bar cross section thereby be- 
comes an inverse boundary value problem [3], in which the shape of a closed curve boun- 
ding the domain is to be determined under an excess boundary condition for the boundary 

value problem. The application of methods of complex variable function theory turns 

out to be effective in seeking the shape of the outer contour of a bar section with a ca- 

vity of given outline, or the shape of the cavity for a given outer boundary of the domain. 

1. Let the section of twisted bar occupy a doubly-connected domain Q bounded by 
the contour L = L, + L,, where L, is the inner and L, the outer contour, F, and 
Fz are the areas enclosed by these contours so that the area of the section is F = F,- 

Fl 
For a given section area F find the outer contour L, so that the torsional stiffness of 

a bar with a cylindrical cavity of given outline L, would be maximal. The problem is 
to seek the contour I,, bounding the domain Q where a function cp (x, y) is defined, 
which satisfies the Poisson equation and the boundary conditions of the torsion problem 

Acp + 2 = 0, cp = Cl’ on L,, cp = C,’ on L, 

where 15,' , C,’ are constants, one of which can be given arbitrarily. Let us henceforth 
consider C,’ = 0. The Bredt condition on the circulation of the stresses has the form 

2F, + \-$dS=O 

h 
(1.1) 
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Moreover, in conformity with [l], an additional differential condition, which is excess 
for the ordinary torsion problem 

clq I dn = Cz 

should be satisfied on the required contour Lz, where C,’ is a constant to be determ- 

ined. Let us introduce a function f (2) which is regular in the domain Q,.(the com- 
plex torsion function [4, 51) so that 

Ref (z) = cp (z, y) + Y2 (z* -I- Y”), 2 = 1: + iy 

The problem reduces to seeking the outer boundary L, of the doubly-connected do- 
main Q within which a regular function f (z), unique by virtue of (1. l), is defined 

which satisfies the conditions 

f (t) + f(t) = 2c,’ + tz, t E L, (1.2) 

f(t)=+ + (idt-q+iC;(,dt,, Im to = 0, t, to E L-2 

t* to 

We henceforth assume that the domain 51 of the section is symmetric with respect to 
the coordinate axes. 

The inverse boundary value problem of determining the doubly-connected domain Q 
with known inner L1 and unknown outer La contours reduces to seeking a certain map- 

ping function. Let the mapping of the exteriors of the unit circles yl and ya in the planes 

E, 5 , respectively, onto the exterior of the contours L, and L, in the z-plane be re- 

alized by means of the functions 

z = AxI (E), 2 = Bxa (5) 

Xl (8 = E ,io %Ee2’ 9 a, = b, = 1 

. 

Here A, B are real constants defining the scale ; by virtue of the symmetry of B the 
coefficients Ui, bi are real, and the functions x1, xs contain odd powers of E, c.The 

coefficients ai are known for a given inner contour L, , but the function x2 is to be de- 

termined, i.e. the quantities bi characterizing the outer contour L,. The relative size 
of the section x = A / B plays the part of a parameter. 

Taking account of (1.3), we obtain on L, 

(1.3) 

1 dt 1 = + (atI + & (I?+ r-q dz 
i=l 

(1.4) 

& (fdt - tdT) = ZJ (Blo + 2 B,i (r2i + z-‘~)!~T 
i=l 

t7= B’(B,+~B,i(r2’+ f-l{)) 

i=l 

k-m 

B lm = jz (I- 2i - m)bjbm+jt B2m = ~~~b&+rnv m=O,i,;..,k 
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where the real coefficients a, are determined from the system 
h’ I(--nv 

2 
km-k 

UlqC+_fl - iz (I - ai) (I - 2m - 2i) bibm+i = O7 

m=O,i,...,k 
Taking accouht of (1.2), the boundary condition for the function f (t) on the original 

of I!&, the unit circle J$ and the 5 -plane, has the form 

f (t (z)) = B2 (ke h z + g (G)) 3 g(G) = 2 mC2’¶ ITI= 1 (1.5) 
j=-_k' 

ko = aoC, + Go, C2 = 6'2' / B, m, = If2 BgO, rnj = ‘I2 (B,ljl + 

(C+lj\ +B,lj\)/ ij, i=+_i, +_2, . . .+k 

We obtain C2 = -B,, / a,, from the requirement of uniqueness of the function f(z) 

2. Let us introduce the Cauchy type integral 

F (2) = & \ tg at 
LZ 

(2.1) 

Here and henceforth, z, t denote the dimensionless complex coordinates z / B, t / 
8. Limit values of the integral (‘2.1) are related by the Sokhotskii-Plemelj formulas[4] 

F+ (to) - F- (to) = g (to), F+ (t,) + F-(t,) = 4 \f$-dt (2.2) 
LZ 

t, to E L2 

hence, by following [S] and taking account of the first of the formulas (2.2), a function 
fd (z) analytically continuable through L2 can be introduced 

B’fo (2) = 
1 

f (Bz) - B2F+ (z) for z E t2 

- B2F- (z) for z outside of Lx 

The function f,, (2) is analytic outside L, and vanishes at infinity. 
Let the inverlon of the function xz (5) have the form 

5 = z jll fiiZ-2i7 $i = 

min (k, i) 

2 C-4.3) 
j=mar(o, it2k(l-i)) 

(1 - 2j) bttj2bj 

Bo=l, i=l,2,... 

where quantities of the type b$Yi3T”’ are coefficients of powers of polynomials in any of 

the variables (z, 5, E). For instance 

(& big-“)- = jg bj”‘5-2i, 
min (k. j) 

bfm’ s i=max cO,zk (1_-m)) b ib!7-‘) 

Taking account of the Cauchy formulas and the inversion (2.3), we calculate the va- 
lue of F (z) for z EZ S2. In the domain Q of the section we have a representation for 
the function f (Bz) 

f (Bz) = B2 (fo (z) $- $ .iZ2i) * ni = :g mz+#f2i+2j), i =O&. .k (2.4) 
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8. The torsion function f (Bz), which is regular in the domain a, is expressed in 

terms of the function f,, (z), which is regular outside L,, and equals zero at infinity ac- 

cording to (2.4). From (i. 3) we obtain a boundary condition for the function f,, (z) on 

the original L, , the unit circle yr 

fo (t) + f_ = - 2Nf) + 2c1+ &X2 + 5 (A& - Aq& + c+ (3.1) 
i=l 

lol=1, Cl=C1’lB2 

No = i nix2iaj2i), N, = 5 nix2$$yi + i 2i (2i) 
?ZiX l&m 

i=o i=l km 

m=i,Z,...k 

The asterisk on the index k in (3.1) indicates that only needed powers of (T to a given 
index are kept in the expansion. 

The function f. (z) = f. (xx1 (E)) (we denote it by f. (E)) with the above taken 
into account has the form 

f0 (E) = ii hiE-2i, hi=A2i$-jl/i,, f=i,2 ,... k (3.2) 

and the constant C, is determined by the expression C, = No - V2 A,,x2. The quan- 
tities A,i in (3. l), (3.2) are defined analogously to Bsj by replacing the coefficients 

bj by aj. 
We write the inversion of the function XI (8) as 

E = ZIP Jo pi(ZW-1)-2i, pi = ‘“*~’ i, 
(1 - 2j) al!i2);lj (3.3) 

Po=i, i=i,2... 
j=max (0, (+sQr--i)) 

We have 

E-1 = xz-1 ig vi (xz-I)%*, 
i-1 

vi= - 2 pi-iv,., v,,=I, i=i,2 ,... k (3.4) 
j=O 

In the domain outside L, (including the contour itself), the function f. (z) has the form 

f. (z) = jj n_iz-2i 

j=l 
i=1,2,...k 

and we obtain the following representation for the complex torsion function in the domain 

Q of the section: 

f (Bz) = B2 i nizei 
i--___k* 

Analogously to (3.4), we have in the 5 -plane 

z-1 = 5-l g p&-2i 

i=O 

Returning to the boundary condition (1.5) on Ye, we obtain identities for nonnegative 
powers of r2P 

ii nibi(?i - mp ~‘0, p=O,i,...k 
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and for negative powers r- sp we have k nonlinear algebraic equations in bi 

(3.5) 

4. Equations (3.5) are satisfied: (1) for bt = 0, x = 0, the stiffness of a solid circular 
bar is maximal; (2) for ai = bi = 0, x # 0 the stiffness of a hollow bar is maximal if 

the section is in the shape of a circular ring. 

Fig. 1 

a a.5 s/B 

Fig. 2 

Let us show that a thin-walled bar section of maximal torsional stiffness may be con- 
sidered as a section with constant wall thickness as 31 + 1 . 

According to the technical theory of the torsion of thin-walled bar, the torsional stiff- 
ness D equals D= 4@” ’ 

(sb 
‘h-l@)& -1 

L > 

where h (a) is the wall thickness, and s is the arc coordinate of the middle contour L 

of a section enclosing an area Cp. 
The maximum of the functional, D for the side condition 

5) h(s)ds=F E’==const, CD= F,+ 
L i 

-gF 
i 

is achieved for h (s) = const. 
The same result also follows from the equations of the problem (3.5). Setting E = 5 = 

ie e in (X.3)‘ we have a parameteric representation of the boundaries of the domain Q = 
(tr E L,, tz E L,).The direction n of the outer normal to the contour L, equals 

n = -idt, / ] dk 1 

For sufficiently small wall thickness h (L, and L, are close) 

h = Re n (f, - f,) 

to first order accuracy. Taking account of (1.41, we obtain 

h=B $ e*cos2nae 
VI==0 
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Assuming ai = b, - Ai, x = 1 - A and linearizing the equation of the system(3.5) 

relative to the quantities Ai, A, we find to first order accuracy 

C - 0, m- m=i,2,. . ., k, h = Bc, 

i. e. the section wall thickness is constant to 
first order accuracy. 

6, We have a system of k nonlinear equa- 
tions (3.5) in the coefficients b, for known 
values of aj and x in order to seek the un- 

known contour L, . This system was solved 

by the Newton method. The derivatives of 
the left sides of (3.5) with respect to the un- 

knowns bi were found numerically. Taken as 
an initial approximation were x = 1, ai = 

a.3 

Fig. 3 

x/B 1.0 
bi , and a solution in the range 0 <X < 
1 was obtained with a spacing u = -_0.01 

in x . The inner contour L, was given in the 

form of anellipse (a, = 0.1, 0.2, . . ., 
0.9; ai = 0, t = 2, 3, . . ., k) and as a. rectangle with a different relation between 

the sides ?I, (h = 1,2, ,.. , 10). Values of coefficients of the function x1 (E) were 

taken from [7], 
The outlines of the outer contours of the section are represented for cases when the 

Fig. 4 
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Fig. 5 

when 3t = 0.7. 

inner contour A, is an ellipse for a, = 0.3 
(Fig.l), a square (Fig. 2),a rectangle with a= 

3 (Fig. 3). Curves J-5 correspond to the re- 

quired contour L, for given values of the pa- 

rameter xequal to 0.2,0.3,0.5, 0.7, 0.9. 

For small values of X the outer contour is 
close to a circle (for 1c = 0.3 in the case 
of an elliptical hole), and for values of 31 

near to unity, the section has an almost con- 

stant wall thickness (x = 0.9). 

Given in Fig.4 are graphs of the quantities 
ai, bi (k = 2) as a function of x. Curves 
I, 2,s correspond to the value (zl = 0.2, 
0.3, 0.4, Represented in Fig. 5 are analogous 

curves for a rectangular hole (h = 3). Four 

coefficents are kept in the expansions Xi(E), 

Xr (Q l 

The solution converges sufficiently rapidly 

in h- . Thus, for sections with square and rec- 

tangular (a = 3) holes, the outer contours 
L, practically agree for k = 2 and k = 4 

Analogous computations were made for a bar with a cavity in the form of a right tri- 

angle, 
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